
DSchultz SEW25 Paper_111400.doc 1 November 14, 2000

A Matrix Approach to Software Process Definition

David Schultz, Judith Bachman, Linda Landis (CSC)
Mike Stark, Sally Godfrey (GSFC)

Maurizio Morisio (Univ. of Maryland)

Introduction

The Software Engineering Laboratory (SEL) is currently engaged in a Methodology and Metrics program
for the Information Systems Center (ISC) at Goddard Space Flight Center (GSFC). This paper addresses
the Methodology portion of the program. The purpose of the Methodology effort is to assist a software
team lead in selecting and tailoring a software development or maintenance process for a specific GSFC
project. It is intended that this process will also be compliant with both ISO 9001 and the Software
Engineering Institute’s Capability Maturity Model (CMM).

Under the Methodology program, we have defined four standard ISO-compliant software processes for the
ISC, and three tailoring criteria that team leads can use to categorize their projects. The team lead would
select a process and appropriate tailoring factors, from which a software process tailored to the specific
project could be generated. Our objective in the Methodology program is to present software process
information in a structured fashion, to make it easy for a team lead to characterize the type of software
engineering to be performed, and to apply tailoring parameters to search for an appropriate software
process description. This will enable the team lead to follow a proven, effective software process and also
satisfy NASA’s requirement for compliance with ISO 9001 and the anticipated requirement for CMM
assessment. This work is also intended to support the deployment of sound software processes across the
ISC.

Background

The SEL is currently part of the Information Systems Center (ISC) at Goddard Space Flight Center
(GSFC). The ISC was formed in December 1997, by reorganizing Government personnel, projects, and
other resources from previously existing GSFC organizations. It comprises a number of application
domains, and represents a conglomerate of different organizational cultures. In particular, the various
predecessor organizations had employed a variety of approaches to software development. The evolution
and adoption of a single organizational culture, and a single set of recognized software processes, is a
challenge that ISC is presently facing.

In early 1999, the SEL directors met with each of the eight branch heads within the ISC, to determine how
the SEL could best serve their needs. The branch heads indicated that they would like to see the SEL
package the proven software technology that it had developed over 25 years, so that it could be applied
within the ISC. The Methodology study and the companion Metrics effort were two of the activities that
resulted from these discussions.

A key constraint that helped shape the new ISC culture was NASA’s decision to seek registration under the
ISO 9000 suite of international standards. This decision increased the urgency for developing a standard
software methodology that could be used consistently across the ISC.

A brief note of explanation regarding the ISO 9000 suite may be in order. This suite of quality standards
was first published in 1987, as a set of five standards, ISO 9000 through ISO 9004. These standards

DSchultz SEW25 Paper_111400.doc 2 November 14, 2000

specified minimum requirements for a quality system. A revised version of the ISO 9000 suite was
published in 1994 [1-5]. These standards, which were written primarily for the manufacturing community,
also had a strong and immediate impact upon the software community. The standard most frequently cited
for applicability in a software environment is ISO 9001. In response to a demand for guidance on how to
apply ISO 9001 in a software environment, ISO developed ISO 9000-3, “Guidelines for the application of
ISO 9001:1994 to the development, supply, installation and maintenance of computer software” [6]. A
new revision of the ISO 9000 suite is scheduled for publication in late 2000, and is currently available in
draft version.

In June and July of 1999, GSFC conducted a series of internal audits against ISO 9001. A subsequent
round of informal internal audits was conducted within the ISC around October 1999. In response to these
internal audits, the SEL established a working group of ISC team leads to develop recommendations for
bringing the ISC into conformance with ISO 9001. In November 1999, this SEL ISO team identified
recommendations in the areas of both methodology and metrics. [7]

The key recommendations of the ISC team leads that drove the present Methodology effort were as
follows:

• Define a template-based approach to documenting software methodology
• Organize information around developer activities, rather than around ISO concepts.
• Support multiple life cycle models, including the incremental build model and the spiral model
• Define methodology details separately for the following project types:

• Custom (new) software development
• Commercial off-the-shelf (COTS) or Government off-the-shelf (GOTS) based systems
• High reuse projects—this includes maintenance projects and the use of product lines; the key

element of a high reuse project is that the system architecture is almost completely defined at the
beginning of the project.

A second constraint that is expected to affect the ISC culture is NASA’s recent decision to adopt the CMM.

DSchultz SEW25 Paper_111400.doc 3 November 14, 2000

Figure 1. ISC Application Domains

Technical Approach

Previous Related Work

The approach we used in this research derives from a three-level life cycle/method/technique hierarchy of
software processes developed by Dr. Vic Basili [9]. Our work built on four predecessor SEL documents:

• Manager’s Handbook [10]
• Recommended Approach to Software Development [11]
• NASA Software Management Guidebook [12]
• ISC Profile Report. [13]

The Recommended Approach and Manager's Handbook are "companion" documents that served for many
years as the SEL's primary guidebooks for software development and management. Developed for the
GSFC's Flight Dynamics Division and refined over 15 years in the SEL's "Experience Factory", the
guidance provided in these documents remains sound engineering practice for much of the ISC. The
activities listed in the current Methodology are consistent with those described in these two documents.

The Methodology team borrowed from the NASA Software Engineering Program's Software Management
Guidebook in defining the life cycles that are recommended for use with the current processes. The team
used the ISC Profile Report to identify the key software domains within the Center and the associated
software processes. These domains and processes were the starting point for the present research.

It should be noted that we are using the term “software process” here as it is used within the ISC. We
realize that, within the software engineering community, this term implies elements that are missing from
our model, particularly synchronization of activities and entry/exit criteria. We have chosen to concentrate

End-to-end data systems engineering of
mission systems development activities.

Off-line mission data systems
(e.g., Command man., s/c mission
and science P&S, GN&C, NCC)

Real-time ground mission data systems for
I&T and on-orbit ops (e.g., s/c command &
control, launch and tracking services)

Tools and services in support of information
management

Science data systems including
data processing, archival,
distribution, analysis & info man.

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Technology R&D focused on sys autonomy,
scientific analysis tools, distributed
computing architectures

Embedded spacecraft, instrument and
hardware component softwares; FSW
testbeds

DSchultz SEW25 Paper_111400.doc 4 November 14, 2000

initially on the description of the software activities. Our intent is to develop a consistent set of methods,
products, and techniques before we address the time-sequencing of these activities, and the associated
synchronization and entry/exit concerns.

Research Activities

We began by reviewing the ISC Profile Report to familiarize ourselves with our customer base. The
Profile documents the SEL’s work in baselining the newly formed ISC organization, and it identifies the
diversity of software projects and processes encompassed within the ISC. From the Profile we developed
a preliminary grouping of the software engineering activities the Center conducts.

We then collected and reviewed 16 existing ISC Product Plans written by ISC Team Leads to describe their
respective projects and plans for the technical work and project management. We characterized each
project by risk level, size of software team (which generally correlated with problem complexity), and
software process. We also noted the software life cycle model that each project claimed to follow. The
results are shown in Table 1 below. During the course of this project, the parameter initially labeled ‘risk’
evolved to ‘criticality of application’, and we also identified aggressiveness of development schedule as a
key tailoring factor.

Table 1. Properties of the 16 Projects, as drawn from their Product Plans

Project Methodology Process Type Team Size Schedule Risk
SIRTF IRAC Waterfall New Development

with COTS
1 Aggressive Major risk is

schedule
DTAS Spiral New Development

with COTS
2 Normal “No major

risks”
GUMP Structured Design New Development 4 Normal Low risk
Hitchhiker HCU FSW
(Build 2)

Structured Design New Development 3 “Liberal” Technical risk

Hitchhiker Ground Data:
ACE

Structured Design New Development
with some COTS

7 Normal Low risk

Hitchhiker Ground Data:
Avionics

Structured Design New Development
with some COTS

7 Normal Technical risk

Triana Ground Data Incremental Build High Reuse with
COTS / GOTS

17 Aggressive Multiple risks,
esp. schedule

Triana Command / Data
Handling Flight S/W

Object Oriented
Design; 2 releases

High Reuse with
COTS

7 Aggressive Major risk is
schedule

Triana AOCS Flight
Software

Object Oriented
Design with
Incremental Build

High Reuse with
COTS / GOTS

4 - 8 Aggressive Major risk is
schedule

EOS AM-1 FDS Incremental Build New Development
with some COTS;
prototyping for
verification of FDS
design and
operational concepts

10 - 12 Aggressive Major risks are
schedule and
external
deliveries

MAP “Not applicable” Test and
maintenance only

12 Aggressive Primary risk is
schedule

HESSI ITOS Incremental Build High Reuse ~ 6 Normal No risks
identified

Triana ITOS Incremental Build High Reuse ~ 7 Normal No risks
identified

DSchultz SEW25 Paper_111400.doc 5 November 14, 2000

Project Methodology Process Type Team Size Schedule Risk
ULDB ITOS Incremental Build High Reuse ~ 1 Normal No risks

identified
NMP / EO-1 GS (Multiple) New Development

with COTS / GOTS
(very large) Aggressive Major risk is

schedule
HST Payload FSW (Multiple) Maintenance with

extensive
reengineering

(very large) Normal No major risks
identified in
Product Plan

There were other evolutionary changes in the parameters that eventually came to be known as ‘tailoring
factors’. At one point, we had three categories for size (small, medium, and large) and three also for
criticality (low, medium, and high). We soon determined that the processes would be essentially the same
for small and medium sized teams, and for medium and high criticality projects. So we were able to drop
the ‘medium’ categories as distinct drivers. In this manner, the tailoring factors evolved to their present set:
team size, aggressiveness of schedule, and criticality of application. These tailoring factors, along with
software process, became the taxonomy that we finally used.

Our next steps were (1) to group the projects according to this classification to identify representative
examples of each type of project, and (2) to meet with the software team leads of projects that were
representative of the different categories in our taxonomy. We interviewed these team leads to clarify
information in the Product Plans and to obtain additional details about the software processes they followed
and the software life cycles that they employed. As a result of these interviews, we were able to converge
on a set of software processes and software life cycles that typify the ISC environment.

We determined that, despite variations in project terminology, and frequent use of COTS or GOTS, most
ISC projects actually utilized one of four software processes:

• New Development
• Maintenance
• High Reuse
• Prototyping.

The four software life cycle models that we identified were:

• Waterfall
• Incremental Build
• Prototyping
• Spiral.

Software Process Description

Using the SEL’s Recommended Approach as our starting point, we prepared an initial high-level
description of a generic process for New Software Development. We then reviewed the 16 Product Plans
and modified the generic process to reflect the processes that were actually being used within the ISC. We
added the tailoring factors to reflect how the processes were actually adjusted for small teams, aggressive
schedules, and high criticality. Finally, we developed separate initial, very concise process descriptions for
Maintenance, High Reuse, and Prototyping.

We organized these process descriptions in terms of ‘activity groups’, which is a concept first put forth in
IEEE Std 1074-1998, “Standard for Developing Software Life Cycle Processes.” [14]. Activity groups are
simply collections of activities that together accomplish a single well-defined function, and produce a
single key product. For example, the Requirements activity group is comprised of activities such as

DSchultz SEW25 Paper_111400.doc 6 November 14, 2000

defining software requirements, defining interface requirements, defining user interface requirements,
developing derived requirements, and prioritizing requirements.

Note that an activity group is not the same as a phase of the software development life cycle. In a software
life cycle model, a phase refers to a period of time. For example, we can speak of the Implementation
(sometimes called ‘Coding’) phase. Under the traditional waterfall model, this phase represents the period
of time during which coding is performed. An activity group, on the other hand, is a collection of related
activities, but there is no implication that these activities are performed within a specific period of time.
The activities of a single activity group may be (and usually are) performed over multiple phases. The
team lead can select a software life cycle model and use it to develop a time sequencing of the activities in
the selected software process.

We identified six activity groups that were uniform across all of our standard processes: Requirements,
Design, Implementation, Test, Delivery & Support, and Cross-Cutting. Cross-Cutting activities are those
activities that typically last throughout the entire software life cycle, such as task management,
configuration management, quality assurance, document preparation, and training.

Each of these activity groups comprises activities that, together, perform one or more specific functions.
The activity groups and their respective functions are listed in Table 2.

Table 2. Functions of the Six Activity Groups

Activity Group Functions
Requirements Reach agreement with the customer on what the system is intended to

accomplish
Design Define the structure of the software system, and the function of each

component
Implementation Code and unit test each software module
Test Perform the required levels of testing (e.g., build/release, system, and

acceptance testing) to validate the software system
Delivery and Support Transition from development mode to operational mode
Cross-Cutting Perform ongoing supporting activities that transcend individual activity

groups, but are necessary for a successful project

These activity groups fit into a four-level hierarchical model, as shown in Figure 2. We can view this
hierarchy as a product line. That is to say, once we have selected a process type, identified the activities to
be performed within each activity group, and defined the techniques to be followed, we have defined a
software process tailored for a specific project. The two highest levels of the hierarchy, the software
process type and the activity group, are invariant. A given ISC project will always follow one of four set
processes (New Development, High Reuse, Maintenance, or Prototyping). Similarly, the selected process
will always include six activity groups (Requirements, Design, Implementation, Test, Delivery and
Support, and Cross-Cutting). At the third level, activities within the activity groups vary somewhat from
one project to another. The techniques, on the lowest level, exhibit considerable variability from project to
project.

DSchultz SEW25 Paper_111400.doc 7 November 14, 2000

Figure 2. Conceptual Methodology Model

Software Process Depiction

Because we needed to specify the conditions under which certain activities would be performed, the
process descriptions were phrased in structured language, similar to pseudocode or program design
language (PDL), employing IF-THEN loops and similar constructs. For each actual step to be performed, a
more detailed description was written. Later, to simplify the description, we used hyperlinks to connect the
steps in the process descriptions with their respective detailed descriptions. It was thus possible to read the
entire description of a process without being distracted by the details of the individual steps.

The problem with this pseudocode representation was that it required one description for each software
process and for each combination of project drivers. For example, we needed one description for the New
Development process to be followed by a small team, on a low-criticality application, under an aggressive
development schedule. We had a different description for the New Development process to be followed by
a large team, on a high-criticality application, under a lenient development schedule. With three project
drivers, and three values for two of them, two values for the third, and four process types, we would
potentially need 3x3x2x4 = 72 separate process descriptions. It would have been difficult for us to
compare these 72 process descriptions and identify the similarities and differences among them.

This problem was resolved by switching to a matrix representation of the software processes. The
pseudocode and the steps to be followed were identified in the left-hand column of the matrix. Each
combination of tailoring factors (e.g., small team, aggressive schedule, critical application) was assigned
one of the remaining columns, and an ‘X’ in that column was used to indicate whether each step of the
process was to be performed for each type of project. (An example of a process matrix is contained in the
Appendix.) Hyperlinks were used, as before, to provide links to the associated detailed information.

Use of the matrix approach greatly simplified the development, presentation, and review of the process
descriptions. The matrix approach also suggests an automated approach for future development: after the
process type and drivers are selected, the activity list for the project could be generated automatically. The
resulting “tailored” process could then be inserted or referenced in the appropriate portion of the Product
Plan. The complete model for our approach to process tailoring is shown in Figure 3.

Software
Process

Requirements
Definition

Technique #2

Technique #1

Review Code Activity n

Inspection Formal Proof
Walkthrough

 Requirements
Analysis

Implementation
Activities

Requirements
Activities Activity Group N

Technique #nTechnique #1

n Software
Process Type

n Activity
Group

n Activity
(Method)

n Technique

DSchultz SEW25 Paper_111400.doc 8 November 14, 2000

Figure 3. Software Development Process Model

Verification and Validation

In the course of this research, we used three levels of verification and validation to assess the suitability and
usability of our work products:

• Review of work products within the Methodology working group
• Review of work products by working group of ISC team leads (see under ‘Background’ above)
• Occasional open forums (such as this Workshop) at which our work is presented.

As of this writing, these work products are:

• Hypertext overview of the process descriptions
• Set of definitions (based on IEEE standards and the CMM) that resolve standard software engineering

and ISO terminology
• New Software Development Process matrix
• Maintenance Process matrix
• High Reuse Process matrix.

Using the matrix representation described above, each process provides for tailoring according to the
following three tailoring factors:

• Team size (small/medium/large)
• Schedule (normal/aggressive)
• Criticality of application (Critical/non-critical).

The five work products have all passed through the first three levels of our V&V process. They have not
yet been subjected to a fourth level of V&V: operational use of the processes by specific GSFC projects
and teams. This activity will begin shortly, when actual software projects at GSFC begin using these
processes.

Life Cycle Tailoring FactorsProcesses Activity Groups

Tailoring to Project

Tailored
Process

ISC Process Definition

Project Inputs
Ø Life Cycle Selection
Ø Process Selection
Ø Project-Unique Activities Selection
Ø Tailoring Factors Selection

Product Plan

Online Documentation

DSchultz SEW25 Paper_111400.doc 9 November 14, 2000

Lessons Learned

Benefits of the Matrix Representation

The matrix representation of a software process turned out to be a key factor in the success of the
Methodology effort. The matrix made it easier for both developers and reviewers of a software process to
compare the differences among different tailored versions—for example, to compare its use for small teams
against large teams. The use of a table-like matrix also made it easier to deal with multiple levels of nested
loops within the pseudocode representation of the processes.

Significance of the Software Life Cycle Model

At the outset of this work, it was felt that both the application domain and the software life cycle model
selected would be significant factors in the selection and tailoring of a software process. This turned out
not to be the case. The software life cycle determines when and how often each activity will be performed,
but has little impact on the detailed description of the activity. Similarly, the differences due to application
domain become significant only at the Technique level of the hierarchy. Organizing the process
descriptions by activity group allowed us to define processes in a manner that gave the projects greater
flexibility in selecting their life cycles. By defining activity groups as distinct from life cycle phases,
activities were not constrained to a particular phase and could be repeated as needed, both throughout the
life cycle and across different application domains.

For example, on a project that followed the Incremental Build life cycle model, the activities in the
Implementation and Test activity groups could be repeated for every build. But this model makes no
provision for iterations through the Requirements activities. Using activity groups, this is not a problem.
Similarly, the Prototyping and Spiral models involve multiple iterations of the Requirements and Design
activity groups; these, too, are easier to represent using activity groups.

Process Integration

A lesson that we learned from the walkthroughs was that the Team Leads were searching for common
elements among the processes. We, as process engineers, tended to focus on the differences between the
processes. The Team Leads, however, as software developers, sought to reduce the number of differences
among the processes. In particular, they suggested that the New Development and High Reuse processes
could be merged into one. We are presently examining the implications of that proposal. It remains to be
seen whether the processes will become more differentiated once software teams actually begin using these
standard processes and providing operational feedback.

Future Work

There are five areas of work that we hope to accomplish in the next two years:

• Expansion of our model to incorporate software products and tools, entry/exit criteria, and
synchronization of activities

• Completion of the Prototyping Process
• Incorporation of operational feedback from actual GSFC projects that use the Processes
• Modification of our process model to address CMM
• Development of a web-based tool to support selection of a software process and the documentation of

that process in a project’s Product Plan.

DSchultz SEW25 Paper_111400.doc 10 November 14, 2000

Conclusion

This work is significant for two reasons. First, we have been able to identify common elements in a
complex environment of diverse application domains. This work provides a foundation on which we can
develop appropriate techniques and product definitions that will allow the ISC to employ a consistent
approach to software engineering development, while allowing optimization for a given project. This in
turn will permit the collection of a consistent set of software metrics across a wide range of project types,
and the continuous improvement and refinement of our software engineering knowledge base.

Second, we have developed a simple tool (the matrix) for describing an important aspect of software
processes. This tool greatly facilitated both the presentation and the review of the processes and their
component activities. We expect that it will aid us in defining requirements for a more automated, web-
based tool that will be useful to software team leads.

Acknowledgements

The GSFC ISC Team Leads who developed the ISO Methodology and Metrics requirements, and who
participated in the verification and validation of the Methodology work products, are listed below:

Lisa Shears (Code 582)
Scott Green, Terri Wood (Code 583)
Karen Keadle-Calvert, Dan Mandl, Tom Taylor (Code 584)
Jeff Lubelczyk (Code 586).

The authors are grateful to Steve Condon, who serves as CSC team lead for this work and has participated
in the Methodology team meetings from the inception of this project. Gary Meyers, of the GSFC ISO
study team, participated in the Methodology work from its inception, and provided very helpful review
comments at every stage. Mike Tilley, of Raytheon Corp., participated in this work as a representative of
the Flight Software Branch (Code 582) of the ISC. The concept of a tabular representation of a software
process was originally Mike Tilley’s; Gary Meyers proposed some very helpful modifications to Mike
Tilley’s original representation.

DSchultz SEW25 Paper_111400.doc 11 November 14, 2000

Appendix—Example of Software Process Matrix

Legend: X = Perform this activity F = Perform this review formally
O = This review or activity is optional but recommended I = Perform this review informally
Rv (in 1st column) = Review * (in last column) = This activity is associated with an ISO "shall"

This font and shading indicates logic This font and no shading is used for activities

X.0 Activity Group
Critical Software Non-Critical Software

X.X Major Activity Tailoring Drivers
Normal Schedule Aggressive

Schedule
Normal Schedule Aggressive

Schedule

Activities
Small/

Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

ISO

1.0 Requirements Activities

1.1 Software/System Concept Definition
IF the system concept/architecture is already defined (i.e., because the software to be
developed is part of a larger system or project such as a spacecraft or instrument), but the
software concept/architecture is undefined, THEN

Develop a software concept. Perform for all project types

ELSE (the system concept/architecture is undefined)

Develop a system and operations concept. Perform for all project types

Hold A System Concept Review.(SCR) I F O O *Rv

Hold a combined System Concept Review/System Requirements Review
(SCR/SRR)

I F O O *

1.2 Requirements
IF high-level requirements have not been provided, THEN

Define high-level requirements. Perform for all project types

ENDIF

Derive detailed requirements and specifications. Always perform this activity

1.3 COTS Evaluation and Selection
IF using COTS/GOTS, THEN

DSchultz SEW25 Paper_111400.doc 12 November 14, 2000

Legend: X = Perform this activity F = Perform this review formally
O = This review or activity is optional but recommended I = Perform this review informally
Rv (in 1st column) = Review * (in last column) = This activity is associated with an ISO "shall"

This font and shading indicates logic This font and no shading is used for activities

X.0 Activity Group

DSchultz SEW25 Paper_111400.doc 13 November 14, 2000

Legend: X = Perform this activity F = Perform this review formally
O = This review or activity is optional but recommended I = Perform this review informally
Rv (in 1st column) = Review * (in last column) = This activity is associated with an ISO "shall"

This font and shading indicates logic This font and no shading is used for activities

X.0 Activity Group
Critical Software Non-Critical Software

X.X Major Activity Tailoring Drivers
Normal Schedule Aggressive

Schedule
Normal Schedule Aggressive

Schedule

Activities Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

ISO

2.0 Design Activities

2.1 Procurement
IF hardware, software, and/or firmware must be procured, THEN

Procure and install hardware, software, and firmware. Perform for all project types

2.2 Prototyping
IF there are significant technical risks (e.g. unfamiliar technology, performance/reliability
issues, undefined user interface), THEN

Perform prototyping to reduce risks. Perform for all project types *

Document the prototyping effort. X X X X X X O X *

2.3 Preliminary Design
IF system architecture does not already exist, THEN

Prepare high-level architecture diagrams. Perform for all project types *

FOR all new custom software and glue ware, DO

Design high-level functions or specifications. Always perform this activity *

Conduct walkthroughs and/or inspections of the high-level
functions/specifications.

X X X X O O O O *

IF the software is part of a larger system, THEN

Conduct a Preliminary Design Review. (SSR was held) I F O ORv

Conduct a combined Software Specifications and Preliminary Design Review.
(SSR/PDR)

I F O O *

ELSE

DSchultz SEW25 Paper_111400.doc 14 November 14, 2000

Legend: X = Perform this activity F = Perform this review formally
O = This review or activity is optional but recommended I = Perform this review informally
Rv (in 1st column) = Review * (in last column) = This activity is associated with an ISO "shall"

This font and shading indicates logic This font and no shading is used for activities

X.0 Activity Group
Critical Software Non-Critical Software

X.X Major Activity Tailoring Drivers
Normal Schedule Aggressive

Schedule
Normal Schedule Aggressive

Schedule

Activities Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

Small/
Medium
Team

Large
Team

ISO

Conduct a Preliminary Design Review. (PDR) I F *Rv

Conduct a combined Preliminary Design Review /Critical Design Review.
(PDR/CDR)

I F O O O O *

ENDIF

Document the preliminary design. Always perform this activity *

2.4 Detailed Design
FOR all custom software and glue ware, DO

Develop the detailed design. Always perform this activity

Conduct walkthroughs and/or/inspections of the detailed design. Always perform this activity *

IF PDR was held, THEN

Rv Conduct a Critical Design Review.(CDR) I F I F I F I F *

ELSE (PDR was not held)

Rv Conduct a combined Preliminary Design Review/Critical Design Review
(PDR/CDR)

I F I F I F *

ENDIF

Document the detailed design. Always perform this activity *

DSchultz SEW25 Paper_111400.doc 15 November 14, 2000

References

[1] ISO 9000-1:1994, “Quality Management and Quality Assurance Standards—Guidelines for Selection
and Use”
[2] ISO 9001:1994, “Quality Systems—Model for Quality Assurance in Design, Development, Production,
Installation, and Servicing”
[3] ISO 9002:1994, “Quality Systems—Model for Quality Assurance in Production, Installation, and
Servicing”
[4] ISO 9003:1994, “Quality Systems—Model for Quality Assurance in Final Inspection and Test”
[5] ISO 9004-1:1994, “Quality Management and Quality System Elements—Guidelines”
[6] ISO/DIS 9000-3, “Guidelines for the application of ISO 9001 to the development, supply, and
maintenance of computer software”
[7] M. Stark, L. Shears, S. Godfrey, S. Green, T. Wood, D. Mandl, K. Keadle-Calvert, T. Taylor, J.
Lubelczyk, “Recommendations for Methodology and Metrics: Implementing ISO9000 in the ISC,” GSFC
white paper, November 1999
[8] Howard Kea, “ISC Overview Paper for Software Engineering,” presented at the 23rd Annual Software
Engineering Workshop, GSFC, Greenbelt, MD, December 1998
[9] “Evolving and Packaging Reading Technologies,” Victor R. Basili, Journal of Systems Software, 1997,
Volume 38, pp. 3-12.
[10] “Manager’s Handbook for Software Development, Revision 1,” SEL-84-101, Software Engineering
Laboratory, November 1990
[11] “Recommended Approach to Software Development, Revision 3,” SEL-81-305, Software Engineering
Laboratory, June 1992
[12] “Software Management Guidebook,” NASA-GB-001-96, National Aeronautics and Space
Administration, November 1996
[13] “Profile of Software at the Information Systems Center,” SEL-99-001, Software Engineering
Laboratory, November 1999
[14] “Standard for Developing Software Life Cycle Processes, IEEE Std 1074-1998, Institute of Electrical
and Electronics Engineers, December 1998
[15] Scott Henninger, “Using Software Process to Support Learning Software Organizations,” presented at
the 25th Annual Software Engineering Workshop, GSFC, Greenbelt, MD, November 2000

